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Characterization of Microstrip Discontinuities
on Multilayer Dielectric Substrates

Including Radiation Losses

WILLIAM P. HAROKOPUS, JR., MEMBER, IEEE, AND PISTI B. KATEHI, SENIOR MEMBER, IEEE

,4fA!trac~—A two-dimensional space-domainmethod of moments treat-
ment of open microstrip discontinldtieson multi-dielectric-layer substrates
is presented.The full-wave analysisaccountsfor electromagneticcoupfing,
radiation, and all substrate effects. The technique has been utilized to

characterize commonly used discontinuities on one and two dielectric

layers, and numerical results for step, comer, and T-junction dkcontinu-

ities are included.

I. INTRODUCTION

M ONOLITHIC circuit applications continue to ex-

tend farther into the millimeter-wave range, ap-

proaching terahertz frequencies. At these frequencies, pla-

nar transmission line structures are required for passive

component design. In particular, microstrip components

are frequently utilized in MMIC circuit applications. Un-

fortunately, available microstrip CAD discontinuity and

circuit element models fail to account for electromagnetic

effects, which become significant with increasing fre-

quency. Without reliable CAD, microwave design engi-

neers will face unacceptably lengthy development cycles.

The preponderance of the available microstrip CAD is

based on quasi-static methods [1]-[6], equivalent wave-

guide models [7]-[10], and semiempirical models [11]. These

models require little computational effort, but fail to ade-

quately account for electromagnetic coupling, radiation,

and surface wave excitation. Quasi-static methods provide

accurate characterization only at lower frequencies, while

planar waveguide models contain limited information on

dispersion.

Consequently, an analysis accounting for electromag-

netic coupling, space wave, and surface wave radiation is

required for the characterization of rnicrostrip discontinu-

ities, couplers, and matching elements at higher frequen-

cies. Increasingly powerful computers and innovative tech-

niques make full electromagnetic analysis a realistic

alternative in the design of high-frequency rnicrostrip cir-

cuits. Full-wave analysis has already demonstrated accu-
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racy in modeling simple microstrip discontinuities on sin-

gle dielectric layers.

Often, rnicrostrip discontinuities and elements are en-

closed in a package or a cavity. Jansen has performed an

analysis of irregular covered microstrip elements with a

spectral-domain technique [12]. Shielded microstrip dis-

continuities such as open ends, gaps, stubs [13], and cou-

pled line filters [14] have been studied by the method of

moments.

Nonetheless, microstrip is often used in the design of

feeding networks for monolithic antenna arrays. Unlike

shielded microstrip, open microstrip discontinuities are

free to radiate. Also, the microstrip substrate supports

surface wave modes. High-frequency microstrip design re-

quires a thorough understanding of these effects. Full

electromagnetic solutions have been performed on open

rnicrostrip elements which are electrically thin, such as

open ends, gaps, and coupled lines [17]–[19]. These solu-

tions are based on the thin strip approximation, and utilize

one-dimensional method of moments. Under this assump-

tion, the transverse current component gives a second-order

effect and may be neglected. In addition, an analysis of

open-end and gap discontinuities in a substrate–super-

strate configuration has been performed [20]. More re-

cently, spectral-domain solution was applied to irregular

step and stub elements on a single layer [21]. However, the

characterization of these microstrip elements is far from

complete. The fact that these elements are parts of antenna

feeding networks necessitates a serious consideration of

the coupling and radiation losses and their effect on the

performance of the antenna. In addition, in monolithic

arrays, multiple dielectric layers offer many advantages in

designing feeding networks: they allow alternative solu-

tions to circuit layouts or can provide protection in the

form of superstrates. Furthermore, the appropriate combi-

nation of dielectric and semiconducting materials can cre-

ate circuits with desirable properties such as slow-wave

structures. This paper addresses, for the first time, the

problem of accurate characterization of microstrip discon-

tinuities on multilayer substrates and carefully studies the

effects of this dielectric structure on circuit performance.

The presented full-wave analysis is based on the applica-

tion of two-dimensional method of moments in the space
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Fig. 1. Multilayer open microstrip geometry.

domain. The dyadic Green’s function for a grounded

multi-dielectric-layer configuration is employed to develop

an algorithm capable of analyzing structures with an arbi-

trary number of layers. Included in the solution are both

transverse and longitudinal current components, allowing

the treatment of a wide class of irregular microstrip ele-

ments including steps of width, corners, and T junctions.

On the microstrip conductors, both current components

are expanded by rooftop basis functions. Once the current

distribution is evaluated, transmission line theory is em-

ployed to determine the network parameters,,

Numerical results from this technique have demon-

strated excellent agreement with measurement and the

spectral-domain technique in the case of single dielectric

layers. Scattering parameters will be presented for corner

and for T-junction discontinuities on one layer and on

more complicated dielectric structures. In addition, on a

single layer the more complex geometry of a meander line

containing four coupled bends will be presented. The

implemented method fully accounts for coupling, space,

and surface wave radiation and for all dispersive effects.

II. ANALYSIS

Much of the published work on full-wave analysis of

open microstrip discontinuities has been limited to struc-

tures with strip widths much smaller than the microstrip

wavelength (w << A ~). Under this approximation, the

transverse current corriponent can be considered a second-

order effect and neglected [16]. Therefore, analysis was

restricted to thin-strip discontinuities such as open ends,

gaps, and coupled line filters. Obviously, the transverse

current component is critical for the analysis of irregular

structures such as steps in width, corners, and T junctions,

and is therefore included in this analysis.

The general multilayer open microstrip geometry is

shown in Fig. 1. The dielectric layers are considered loss-

less, but the development is not limited by this assump-

tion. The conductors have infinite conductivity, with the

strip conductor being of finite thickness - (t << A~).

Maxwell’s equations and the application of Green’s iderlti-

ties yield Pocklington’s integral equation for the electric

field:

where E(r) is the total electric field at the point r =

(x, y, z), lx’, y’) is the unknown current on the mi-

crostrip conducting strip, and @F, F’) is the dyadic Green’s

function for x- and y-directed Hertzian dipoles above a

grounded multilayer slab.

To provide for the most general solution possible, strip

conductors may be located on any interface. A general,

numerically efficient Green’s function for an arbitrary

number of layers may be derived by decomposing the

fields into LSE and LSM modes with respect to i? [23].

Cylindrical symmetry may also be exploited by using a

Hankel transform in the transverse direction. This results

in the one-dimensional boundary value problem, which

may be simplified to a two-layer structure by using equiva-

lent impedance boundaries as illustrated in Fig. 2(a). In

Fig. 2(b), the equivalent transmission line model for this

structure is shown, from which the impedance boundaries

can be determined.

After application of the inverse Hankel transform, the

solution to the resulting boundary value problem is a

compact, computational y efficient space-domain Green’s

function. For a multilayer geometry with the strip conduc-

tor located on the top layer (at the dielectric-air interface)

the components of the Green’s function are given by

1 dz COJO(hP) _jUOz

J
.—— —

27r dx= o ~

(,L)po

‘f,(~,~r,,h,,~r,,h=,””) 1
dA (3)

/with p = (x – X’)2+ (y -- Y’)*. In (2) and (3) the semi-

infinite integration is over the spectrum of spatial frequen-

cies A(A2 = kj + k;), and the parameters Un(n = 0,1,”””)
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A
FI, F the solution simplifies to the space-domain Sommerfeld

Green’s function [24], [25]:
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Fig. 2. Derivation of generaf multilayer Green’s function (a) Equivalent
impedance boundaries. (b) Transmission line analogue.

are given in terms of A by the following relation:

(4)

where k. is the wavenumber in the n th layer. In addition,

in (2) and (3) the functions fl( A,C,l,hl, .” “ ) and

f2(A,Crl,hl, ,.. ) are the characteristic equations for the

TE and TM surface wave modes, respectively, and have

the form

fl(~>~rl> %,””” )=uo+ul
(1- r’2)

1 + rf2

(1+ ra2)
f2(A,cr1, hi,... )=u,+fr,uo(1_r2)

a

where ra2 and 17f2 are the reflection coefficients

(5)

(6)

looking

into the substrate; ‘as shown in Fig. 2(b). The surface wave

characteristic equations contain all of the information for

the dielectric layers not adjacent to the current source

within the parameters ra, ~. For the case of a single layer,

where

fl(~> ErI> k) = uo + ~lcoth@lh (9)

~2(~>’rl> hJ “rue+ ul ‘d@lhl- (10)

In the above, C,l is the relative dielectric constant, and hl

is the thickness of the substrate.

The method of moments [26] is applied to transform

Pocklington’s integral equation to a system of linear equa-

tions. The microstrip discontinuity is subdivided into over-

lapping squares. The transverse and longitudinal current

components on the microstrip are expanded over these

squares by finite series

N+l M+l

(11)
~=1 ~=1

N+l M+l

J,= ~ ~ ~:mj:m(X’, y’) (12)
~=1 ~=1

where

Xm(x’j Y’)= [fn(x’)&(Y’)] (13)

~:,m(x’, Y’)= [gn(x’)fm(y’)]. (14)

In (11) and (12), 1~~ is the unknown current amplitude at

the (n, rn)th position of the subdivided element. The func-

tions fn and g~ are subdomain shaping or basis functions
and are consistent with the current boundary conditions.

The subdomain basis functions have piecewise-sinusoidal
variation in the longitudinal direction and constant varia-

tion in the transverse direction according to

I
sink(x~+l– x’)

xn<x ’<xn+~
sin klX ‘

fn(x’) = sink(x’-x._l) (15)

sin klX ‘
Xn.l<x’<xn

\o, else

and

{,

Ym-l<Y’<Ym+l
‘!%(Y’) = ;’ (16)

else.
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Fig. 3. Current on T junction excited by gap generators (c, = 4, h = 0.4 mm, W= 0.2 mm). (a;, Current component .JX(x, y)

(b) Current component .JY(x, y).

In the above, 1X= x.+ ~– x., and k is a scaling parameter

chosen to vary between k. (free-space wavenurnber) and k

(wavenumber in the dielectric). The numerical solution has

shown that best stability occurs when the scaling constant

is chosen close to the guide wavelength. Substitution of the

above into Pocklington’s integral equation (1) yields a

system of linear equations in the form

n=l m=l

N+l M+l

E.v + A E, = ~ ~ Z;X”I;” + Z;YmI;” (18)

where Z,~~( i, j =x, y) constitutes the contribution of the

jth component of current to the ith component of the

electric field from the current element on the ( nrn)th

subdivision. The terms A EX and A EY represent the errors

in the electric field due to the approximations made in the

current.

During the derivation of the Green’s function, all appli-

cable boundary conditions for the grounded multidielectric

geometry were applied, with the exception of the condition

on the microstrip conductors. This condition, which states

that the tangential electric field has to go to zero on the

surface of the conducting strips, will be enforced through

the method of moments procedure. In addition, it has been

shown that Galerkin’s procedure represents a strong condi-

tion on the minimization of the errors AEX and AEY. For

this procedure, the following inner products are defined:

=Jx’’”’fvn’+’(EX + AEx)fv(~)g,(y) ~X@ (19)
J“. 1 .1%,–,

v,= (Lp(n>E.,)

=J”’’’j’”’+’(’(E,+ AEY)~V(y)gP(x) dxdy (20)
x,,_, .U., ,

where f(x) and z..(v) are testimz functions identical to

the basis functions and v =1,. . ., N-t 1, and p =1,. . . . M

+1. In view of (19) and (20), equations (17) and (18) result

in the following matrix equation:

where Z1.1.’:( 1, J = X, Y) represent blocks of the imped-

ance matrix, 1, is the vector of unknown x and y current

amplitudes, and ~. is the excitation vector which is identic-

ally zero everywhere except at the position of the source.

Once the matrix inversion is performed, the current amplit-

udes on the feeding lines are known.

In order to extract the scattering parameters, the discont-

inuity is excited systematically at all ports by delta galp

generators. Assuming a unimodal field excited on the

microstrip feeding line, beyond a reference plane the cur-

rent forms TEM-like standing waves. Transmission line

theory can then be used to extract the scattering parame-

ters for a network from the standing wave patterns on the

feeding lines. The presence of the gap is reflected in the

excitation vector, where

{

1
Jixw =

if x, = Xg
(21:)

o else

and

(22’)
Y

\ o
.,

else

In the above, Xg and yg are positions of an x-oriented ancl

a y-oriented gap generatc~r respectively.

In Fig. 3, the three-dimensional plot depicts the current

on a T junction excited at all three of its ports by gap
generators. As illustrated,, the current assumes a uniform

standing wave pattern along the feeding lines of ~the dis-

continuity. With a length of feed line longer than that

shown, the current SWR and the positions of minima can

be determined. The considered minima are away from the

discontinuity, far enough for higher order modes to have
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vanished. The

X= L looking

r(

where S WR is

reflection coefficient at a reference plane

in any port is

SWR–1
L) = ~J–4=(L– X~J/&

SWR +1
(23)

the current standing wave ratio, and x~in is

the position of a current minimum. The microstrip guide

wavelength A.g has been previously determined from a long

open-ended hne.

From the reflection coefficient, the normalized input

impedance may be determined according to

l+r(L)

‘in= l–r(L) “
(24)

To evaluate the network parameters, an N-port discon-

tinuity must be excited by N independent excitations. In

the case of a symmetrical two-port, even and odd excita-

tions may be employed. For the even case the gap genera-

tors are of equal magnitude and phase, and for the odd

case they have equal magnitude and are out of phase by

180°. The even and odd input impedances, obtained from

(23) and (24), may be combined to give the elements for

the Z matrix, which for the case of a symmetric network

take the form

z:; + z}”
Z,l = ‘“

2
(25)

Z22= Z1l

Z12 = Z21.

(26)

(27)

(28)

In the above, Z#O) refers to port 1 under an even (odd)

excitation. For nonsymmetric networks and multiport net-

works similar expressions may be obtained. The scattering

parameters are obtained from the Z matrix by a simple

transformation.

Finally, the total radiation losses may be determined

from the known relation

P
-@ =1– IS1l[*– IS1212.
Pin

(29)

III. EVALUATION OF IMPEDANCE MATRIX

ELEMENTS

The numerical evaluation of the Sommerfield integra-

tions involved in the Green’s function is quite involved. A

detailed discussion of the evaluation of the Sommerfeld

integrations has been included in a previous work [29] by

one of the authors and will not be discussed further here.

ln the matrix equation of Section II, the terms ZXX;~

and Z YYnV; represent the interactions between the x or y

components located in the (n, nz)th and (v, p)th cells. The

terms ZXY.V# and ZYX;& represent the interaction be-

tween the x and y components located in the (n, rn)th and

(v, p)th cells. The computation of all of the 2 (NM)2

interactions would be extremely time consuming. Yet, the

Fig. 4. Toplitz impedance matrix.

number of computations can be greatly reduced noting the

following points. For the directly coupled blocks, due to

the symmetry and the even valueness of the Green’s func-

tion with respect to the x and y separations, all interac-

tions between subsections depend only on the magnitudes

lx – x’I and l-y – y’!. For the cross-coupled blocks, the

symmetry and the odd valueness of the Green’s functions

may lead to similar conclusions. Thus, vectors of impedance

matrix elements may be precomputed and cataloged ac-

cording to separations for various substrates and subsec-

tion sizes. These libraries can then be used repeatedly for

discontinuity analysis.

A typical impedance matrix is plotted in Fig. 4. As

illustrated, the matrix is Toplitz, with the diagonal ele-

ments being the largest by an order of magnitude. Al-

though not done in the following results, it appears evident

from the figure that interactions of subsections electrically

distant may be ignored. This could result in further savings

in computer time.

IV. NUMERICAL RESULTS

A. Single-Layer Discontinuities

The presented technique has been applied to character-

ize the discontinuity shown in Fig. 5(a). This matching

section is printed on a 10 mil substrate of relative permit-

tivity 9.9. Over the frequency range of interest, the mi-

crostrip section and the substrate thickness are electrically

small ( < ~Ag). As expected, our moment method algo-
rithm has found radiation losses insignificant for this

example. Fig. 5(a) and (b) shows the magnitude and phase

of the scattering parameters as compared to measurement.

As illustrated, the agreement with measurements for mag-

nitude and phase is excellent. In particular, the agreement

of the phase is within 2.50 across this frequency range. The

measurements were performed by TI using a cascade prober

and an 8510 automatic network analyzer.

1) Radiation Losses: Radiation losses for open rni-

crostrip elements can be significant at millimeter-wave

frequencies. To illustrate the ability of the analysis pre-

sented here to account for space and surface wave losses, a
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Fig. 5. Scattering parameters of matching section. Numerical (experi-

mental) dimensions: WI= 9.2 (9.2) mm, W2 = 23 (23.1) mm, L = 50.6
(50.0), C,= 9.9, h =10 roil. (a) Magnitude. (b) Phase.

microstrip stub on a single rnicrostrip layer was compared

to previously published data obtained with the spectral-

domain technique [21]. The microstrip stub contains a

T-junction discontinuity and an open end and is printed

on a 1.27 mm substrate of dielectric constant 10.65. As

illustrated in Fig. 6, the agreement between our space-do-

main technique and the spectral-domain technique is very

good. The quantity denoted G in the graph corresponds to

&\2 + l&212, which may be subtracted from 1 to deter-
mine the total radiated power. The quarter-wave resonance

occurs just beyond 10 GHz. Also included in the plot are

measurements obtained by Jackson [21].

2) Single-Loop Meander Line: Multiloop meander lines

are frequently used in such MMIC’S as traveling wave

amplifiers for their slow-wave properties. The formulation

presented in this paper has been applied to simulate a

single-loop meander line in order to illustrate the versatil-

ityy of the method in modeling irregular microstrip discon-

tinuities. Furthermore, the consideration of a single-loop

instead of a multiloop line speeds up the computation and

reveals very explicitly the effect of distributed discontinu-
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Fig. 7. Design curve for meander line (c, = 9.9, h =10 roil).

ities and electromagnetic coupling on the slow-wave prop-

erties of the structure.

The line is printed on a 10 mil alumina substrate (~,=

9.9). The magnitude of S21 is shown in Fig. 7 as a function

of frequency for three Viilues of the width-to-spacing ratio

(w/s). In addition, Fig. 8 shows the normalized phase

velocity around the loop ( u’/u) as a function of frequency,

where u is the phase velocity on a microstrip line of length

equal to the mean path length of the loop. These results

indicate, in this frequency range, that the parasitic in the

loop increase the phase velocity u’, which in turn tends to

reduce the overall slow-wave effect of the meander line.

B. Multilayer Microstrip Discontinuities

A powerful advantage of the presented formulation is its

ability to model multilayer substrates by replacing the

single-layer Green’s function with the multilayer function.

The full-wave procedure was applied to a microstrip cor-

ner discontinuity on a substrate having two dielectric

layers. The magnitudes of the scattering parameters are

shown in Fig. 9. The multilayer corner has been analyzeld

on four different sub states: A) a 40 mil layer of alumina
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(c, = 10.2): B) a 40 mil layer of Duroid (c, = 2.2); C) a 20

mil layer of Duroid on a 20 mil layer of alumina; and D) a

20 mil layer of alumina on a 20 mil layer of Duroid.

There is significant difference in radiation between the

two multilayer cases. The radiation from the structure

having Duroid over alumina is considerably greater than

the structure having alumina over Duroid, as illustratedin

Fig. 10. It is believed that for this structure theloss is due

primarily to surface wave radiation. Therefore, case D

couples less power into surface waves than case C. This

phenomenon is believed to be related to the suppression of

surface wave excitation reported by Jackson [27] in his

study of antenna elements.

A two-layer microstrip stub was also analyzed. Shown in

Fig. 11 are the magnitudes of the scattering parameters for

a stub on substrate having a layer of GaAs (c. = 12.2) on

quartz (c, = 4.0). Both layers are 0.2 mm thick. Also in-

cluded are the scattering parameters for a stub having the
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same dimensions on a single layer of quartz. The single-

layer example has a resonant frequency at 41 GHz. The

higher effective dielectric constant for the two-layer case

creates a stub having a smaller resonant length, and results

in a downward shift in frequency for the null of \S121. The

radiation losses for both stubs are included in Fig. 12. As

illustrated, the multilayer stub shows a tendency to radiate

less. This indicates that multilayer substrates may be uti-

lized to reduce radiation losses.

V. CONCLUSION

A versatile analysis of microstrip discontinuities has

been presented. The two dimensional method of moments

technique has demonstrated excellent agreement with mea-

surements and other theoretical data derived for a single

layer. A powerful extension of the method allows the

treatment of discontinuities on more complicated dielectric

structures. This is accomplished by employing the Green’s

function for a conductor-backed multidielectric layer, re-

sulting in the ability to model with full electromagnetic
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analysis a wide variety of nonuniform microstrip configu-

rations.

Numerical results for corner and T-junction discontinu-

ities have bee-n presented on two dielectric layers. Addi-

tionally; the ability of the formulation to model larger

elements composed of these building blocks has been

demonstrated by the inclusion of a design curve for a

meander line.

The full-wave technique accurately accounts for cou-

pling, space wave, and surface wave radiation. Curves of

radiation losses are presented for the corner and stub

elements.
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